Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 130, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532399

RESUMO

Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Células Epiteliais , Animais , Humanos , Coelhos , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transporte Biológico , Células Epiteliais/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia
2.
Curr Res Food Sci ; 5: 2135-2145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387593

RESUMO

The present study aimed to determine the effects of polysaccharides-riched Prunus mume fruit juice concentrate (PFC) on uric acid (UA) excretion and the gut microbiota in mice with chronic kidney disease (CKD). C57BL/6 mice were randomly allocated to four groups: two that were fed AIN93M diet, one of which was administered 500 mg/kg PFC, and two that were fed AIN93M diet containing 0.2% adenine, one of which was administered 500 mg/kg PFC. PFC promoted UA excretion, which may have been mediated through increases in the protein expression of ATP-binding cassette transporter G2 (ABCG2), organic anion transporter 1 (OAT1), organic carnitine transporter 2 (OCTN2), and reductions in the protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in kidneys of CKD mice. ABCG2 expression in the intestine was also increased by PFC administration. Additionally, PFC significantly increased large intestinal short-chain fatty acids (SCFAs) concentrations, and the number of gut microbial species, and reduced the abundance of the genera Bacteroides, Pseudoflavonifractor, Helicobacter, Clostridium_IV and Allobaculum, which have a negative effect on UA excretion. In conclusion, PFC may promote UA excretion in CKD mice by altering the expression of urate transporters and regulating the gut microbiota.

3.
Front Pharmacol ; 12: 684545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603016

RESUMO

Esophageal cancer is the ninth most common malignancy worldwide, ranking sixth in mortality. Platinum-based chemotherapy is commonly used for treating locally advanced esophageal cancer, yet it is ineffective in a large portion of patients. There is a need for reliable molecular markers with direct clinical application for a prospective selection of patients who can benefit from chemotherapy and patients in whom toxicity is likely to outweigh the benefit. The cytotoxic activity of platinum derivatives largely depends on the uptake and accumulation into cells, primarily by organic cation transporters (OCTs). The aim of the study was to investigate the impact of OCT expression on the clinical outcome of patients with esophageal cancer treated with oxaliplatin. Twenty patients with esophageal squamous cell carcinoma (SCC) were prospectively enrolled and surgical specimens used for screening OCT expression level by western blotting and/or immunostaining, and for culture of cancer cells. Sixty-seven patients with SCC who received oxaliplatin and for whom follow-up was available were retrospectively assessed for organic cation/carnitine transporter 2 (OCTN2) expression by real time RT-PCR and immunostaining. OCTN2 staining was also performed in 22 esophageal adenocarcinomas. OCTN2 function in patient-derived cancer cells was evaluated by assessing L-carnitine uptake and sensitivity to oxaliplatin. The impact of OCTN2 on oxaliplatin activity was also assessed in HEK293 cells overexpressing OCTN2. OCTN2 expression was higher in tumor than in normal tissues. In patient-derived cancer cells and HEK293 cells, the expression of OCTN2 sensitized to oxaliplatin. Patients treated with oxaliplatin who had high OCTN2 level in the tumor tissue had a reduced risk of recurrence and a longer survival time than those with low expression of OCTN2 in tumor tissue. In conclusion, OCTN2 is expressed in esophageal cancer and it is likely to contribute to the accumulation and cytotoxic activity of oxaliplatin in patients with esophageal carcinoma treated with oxaliplatin.

4.
Mol Genet Metab Rep ; 28: 100776, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34178604

RESUMO

Carnitine transporter defect (CTD) is a potentially life-threatening disorder causing acute metabolic decompensation, cardiac arrhythmia, and cardiac and skeletal myopathies. CTD is included in many newborn screening (NBS) programs. The screening parameter free carnitine, however, is influenced by maternal conditions due to placental transfer. This study reviewed the NBS results for CTD as part of a pilot study in Bavaria, Germany, and the long-term follow-up of the identified patients treated in our center between January 1999 and June 2018. Among 1,816,000 Bavarian NBS samples, six newborns were diagnosed with CTD (incidence of 1:302,667; positive predictive value (PPV) of 1.63% from 2008 to 2018). In the 24 newborns presented to our center for confirmatory testing, we detected four newborns and six mothers with CTD, one newborn and three mothers in whom CTD was presumed but not genetically confirmed, and one mother with glutaric aciduria type I. In 11 newborns, no indication for an inborn error of metabolism was found. The newborns and mothers with CTD had no serious cardiac adverse events or relevant muscular symptoms at diagnosis and during treatment for up to 14 years. Three mothers were lost to follow-up. Revealing a lower incidence than expected, our data confirm that NBS for CTD most likely misses newborns with CTD. It rather produces high numbers of false-positives and a low PPV picking up asymptomatic mothers with a diagnosis of uncertain clinical significance. Our data add to the growing evidence that argues against an implementation of CTD in NBS programs.

5.
Clin Chim Acta ; 505: 92-97, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32070725

RESUMO

INTRODUCTION: Carnitine is essential for long-chain fatty acid oxidation in muscle and heart. Tissue stores are regulated by organic cation/Cn transporter plasmalemmal Octn2. We previously demonstrated low carnitine in quadriceps/gluteus and heart of adult mdx mice. METHODS: We studied protein and mRNA expression of Octn2, mitochondrial Octn1 and peroxisomal Octn3 in adult male C57BL/10ScSn-DMD mdx/J quadriceps, heart, and diaphragm compared to C57BL/10SnJ mice. RESULTS: We demonstrated reduction in mOctn2 expression on Western blot and similar expression of mOctn1 and mOctn3 in mdx quadriceps, heart and diaphragm. There was a significant upregulation of mOctn1 and mOctn2 mRNA by qRT-PCR in mdx quadriceps and of mOctn2 and mOctn3 mRNA in mdx heart. We showed upregulation of mdx mOctn1 and mOctn3 mRNA but no increase in protein expression. DISCUSSION: Dystrophin deficiency likely disrupts Octn2 expression decreasing muscle carnitine uptake thus contributing to membranotoxic long-chain acyl-CoAs with sarcolemmal and organellar membrane oxidative injury providing a treatment rationale for early L-carnitine in DMD.


Assuntos
Carnitina/química , Carnitina/uso terapêutico , Músculo Esquelético/química , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Miocárdio/química , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto/biossíntese , Membro 5 da Família 22 de Carreadores de Soluto/genética , Simportadores/biossíntese , Simportadores/genética , Animais , Carnitina/metabolismo , Diafragma/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
6.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500110

RESUMO

Carnitine plays essential roles in intermediary metabolism. In non-vegetarians, most of carnitine sources (~75%) are obtained from diet whereas endogenous synthesis accounts for around 25%. Renal carnitine reabsorption along with dietary intake and endogenous production maintain carnitine homeostasis. The precursors for carnitine biosynthesis are lysine and methionine. The biosynthetic pathway involves four enzymes: 6-N-trimethyllysine dioxygenase (TMLD), 3-hydroxy-6-N-trimethyllysine aldolase (HTMLA), 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABADH), and γ-butyrobetaine dioxygenase (BBD). OCTN2 (organic cation/carnitine transporter novel type 2) transports carnitine into the cells. One of the major functions of carnitine is shuttling long-chain fatty acids across the mitochondrial membrane from the cytosol into the mitochondrial matrix for ß-oxidation. This transport is achieved by mitochondrial carnitine-acylcarnitine cycle, which consists of three enzymes: carnitine palmitoyltransferase I (CPT I), carnitine-acylcarnitine translocase (CACT), and carnitine palmitoyltransferase II (CPT II). Carnitine inborn errors of metabolism could result from defects in carnitine biosynthesis, carnitine transport, or mitochondrial carnitine-acylcarnitine cycle. The presentation of these disorders is variable but common findings include hypoketotic hypoglycemia, cardio(myopathy), and liver disease. In this review, the metabolism and homeostasis of carnitine are discussed. Then we present details of different inborn errors of carnitine metabolism, including clinical presentation, diagnosis, and treatment options. At the end, we discuss some of the causes of secondary carnitine deficiency.


Assuntos
Cardiomiopatias/genética , Carnitina/deficiência , Carnitina/genética , Hiperamonemia/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias/enzimologia , Doenças Musculares/genética , Aldeído Oxirredutases/genética , Cardiomiopatias/metabolismo , Carnitina/biossíntese , Carnitina/metabolismo , Carnitina Aciltransferases/genética , Carnitina O-Palmitoiltransferase/genética , Humanos , Hiperamonemia/metabolismo , Mitocôndrias/genética , Oxigenases de Função Mista/genética , Doenças Musculares/metabolismo , Oxirredução , Membro 5 da Família 22 de Carreadores de Soluto/genética , gama-Butirobetaína Dioxigenase/genética
7.
Microbiologyopen ; 8(6): e00752, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30318737

RESUMO

The opportunistic pathogen Acinetobacter baumannii is able to grow on carnitine. The genes encoding the pathway for carnitine degradation to the intermediate malic acid are known but the transporter mediating carnitine uptake remained to be identified. The open reading frame HMPREF0010_01347 (aci01347) of Acinetobacter baumannii is annotated as a gene encoding a potential transporter of the betaine/choline/carnitine transporter (BCCT) family. To study the physiological function of Aci01347, the gene was deleted from A. baumannii ATCC 19606. The mutant was no longer able to grow on carnitine as sole carbon and energy source demonstrating the importance of this transporter for carnitine metabolism. Aci01347 was produced in Escherichia coli MKH13, a strain devoid of any compatible solute transporter, and the recombinant E. coli MKH13 strain was found to take up carnitine in an energy-dependent fashion. Aci01347 also transported choline, a compound known to be accumulated under osmotic stress. Choline transport was osmolarity-independent which is consistent with the absence of an extended C-terminus found in osmo-activated BCCT. We propose that the Aci01347 is the carnitine transporter mediating the first step in the growth of A. baumannii on carnitine.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carnitina/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/química , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Alinhamento de Sequência
8.
Mar Drugs ; 15(7)2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714912

RESUMO

This study examined the urinary excretion of tetrodotoxin (TTX) modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK1. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA), l-carnitine, and cimetidine, slightly reduced by p-aminohippuric acid (PAH), and unaffected by 1-methyl-4-phenylpyridinium (MPP+), oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs), partially transported by organic anion transporters (OATs) and multidrug resistance-associated proteins (MRPs), and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs).


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Eliminação Renal/fisiologia , Tetrodotoxina/urina , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carnitina/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Probenecid/farmacologia , Eliminação Renal/efeitos dos fármacos , Suínos , Tetraetilamônio/farmacologia
9.
Acta Pharm Sin B ; 7(3): 260-280, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28540164

RESUMO

Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.

10.
Reprod Toxicol ; 67: 48-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818298

RESUMO

Gabapentin (GBP) is a widely used antiepileptic drug, with potential for use in the treatment of epilepsy in pregnant women. Although studies have examined GBP transport mechanisms across the blood-brain barrier, kidney, and intestine, the mechanism in the placenta has not been fully elucidated. We previously reported that GBP accumulates at high concentrations in human placental choriocarcinoma BeWo cells. The purpose of this study was to examine the transport mechanism of GBP in placental choriocarcinoma cells (BeWo and JEG-3), and to identify the carrier involved. High concentrations of intracellular GBP accumulations were also found in JEG-3 cells. A kinetic analysis showed that a single carrier system was involved in the uptake of GBP. Furthermore, substrates for l-type amino acid transporter (LAT) and siRNAs targeted to LAT1 significantly decreased GBP uptake. Our observations from this study suggest that LAT1 is the main contributor to GBP transport in placental choriocarcinoma cells.


Assuntos
Aminas/farmacocinética , Anticonvulsivantes/farmacocinética , Ácidos Cicloexanocarboxílicos/farmacocinética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Placenta/metabolismo , Ácido gama-Aminobutírico/farmacocinética , Aminas/metabolismo , Anticonvulsivantes/metabolismo , Transporte Biológico , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Ácidos Cicloexanocarboxílicos/metabolismo , Feminino , Gabapentina , Técnicas de Silenciamento de Genes , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido gama-Aminobutírico/metabolismo
11.
Indian J Pediatr ; 84(3): 231-233, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27807682

RESUMO

The authors present a case of carnitine transporter deficiency, which was unmasked after an episode of respiratory distress resistant to treatment with bronchodilators. Chest radiograph showed cardiomegaly; electrocardiogram showed left ventricular hypertrophy and echocardiography revealed dilated cardiomyopathy. Heart failure therapy was initiated and metabolic screening was requested, as family history was indicative of inborn errors of metabolism. Very low levels of free carnitine and carnitine esters in blood were found and genetic testing confirmed the diagnosis of carnitine transporter deficiency. After oral supplementation with L-carnitine, symptoms gradually ameliorated and heart function had fully recovered. Sequence analysis in the SLC22A5 gene revealed the missense mutation c.1319C > T (p.Th440Met) in homozygous state. Homozygous c.1319C > T (p.Th440Met) mutation has not been associated with a pure cardiac phenotype before.


Assuntos
Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/etiologia , Carnitina/deficiência , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Doenças Musculares/complicações , Doenças Musculares/diagnóstico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatia Dilatada/tratamento farmacológico , Carnitina/genética , Carnitina/uso terapêutico , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Hiperamonemia/tratamento farmacológico , Hiperamonemia/genética , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética
12.
G3 (Bethesda) ; 5(1): 49-59, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25387828

RESUMO

Ethanol exposure during development causes an array of developmental abnormalities, both physiological and behavioral. In mammals, these abnormalities are collectively known as fetal alcohol effects (FAE) or fetal alcohol spectrum disorder (FASD). We have established a Drosophila melanogaster model of FASD and have previously shown that developmental ethanol exposure in flies leads to reduced expression of insulin-like peptides (dILPs) and their receptor. In this work, we link that observation to dysregulation of fatty acid metabolism and lipid accumulation. Further, we show that developmental ethanol exposure in Drosophila causes oxidative stress, that this stress is a primary cause of the developmental lethality and delay associated with ethanol exposure, and, finally, that one of the mechanisms by which ethanol increases oxidative stress is through abnormal fatty acid metabolism. These data suggest a previously uncharacterized mechanism by which ethanol causes the symptoms associated with FASD.


Assuntos
Modelos Animais de Doenças , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal , Estresse Oxidativo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino
13.
Eur J Med Genet ; 57(10): 571-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132046

RESUMO

Systemic primary carnitine deficiency (CDSP) is caused by mutations in SLC22A5 gene, which encodes organic cation transporter 2(OCTN2). CDSP leads to skeletal or cardiac myopathy and hepatic encephalopathy. The present study aimed to identify SLC22A5 gene mutations and analyze the potential relationship between genotype and clinical symptoms in 20 Chinese patients with CDSP. The complete coding region of the SLC22A5 gene including intron-exon boundaries were amplified and sequenced in all patients. Eighteen different mutations were found; of which, nine were novel. The mutations clustering in exons 1 and 4 accounted for 66.7% of all mutant alleles (26/39). The c.760C>T (p. R254X) was the most frequent mutation (25.6%, 10/39), suggesting it as an ethnic founder mutation. The relationship between genotype and phenotype was investigated in patients carrying the R254X mutation. Homozygous patients with R254X were late-onset cases who presented with dilated cardiomyopathy and muscle weakness after 1 year of age. Compound heterozygous patients carrying R254X, combined with other missense mutations occurred in very specific positions, dramatically altered OCTN2 protein function. Based on the analysis of case studies, a clear relationship between free carnitine (C0) level in plasma and OCTN2 genotype was not found in the present work, however, the low plasma C0 level could not indicate disease severity or genotype. Further functional studies with a large sample size are required to understand the relationship between R254X mutation and CDSP.


Assuntos
Cardiomiopatias/genética , Carnitina/deficiência , Hiperamonemia/genética , Doenças Musculares/genética , Mutação , Proteínas de Transporte de Cátions Orgânicos/genética , Povo Asiático/genética , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Carnitina/sangue , Carnitina/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Genótipo , Humanos , Hiperamonemia/sangue , Hiperamonemia/diagnóstico , Lactente , Recém-Nascido , Íntrons , Doenças Musculares/sangue , Doenças Musculares/diagnóstico , Mutação de Sentido Incorreto , Triagem Neonatal , Fenótipo , Membro 5 da Família 22 de Carreadores de Soluto
14.
World J Biol Chem ; 1(5): 144-50, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21540999

RESUMO

A novel selenium-containing compound, selenoneine, has been isolated as the major form of organic selenium in the blood and tissues of tuna. Selenoneine harbors a selenium atom in the imidazole ring, 2-selenyl-N(α), N(α), N(α)-trimethyl-L-histidine, and is a selenium analog of ergothioneine. This selenium compound has strong antioxidant capacity and binds to heme proteins, such as hemoglobin and myoglobin, to protect them from iron auto-oxidation, and it reacts with radicals and methylmercury (MeHg). The organic cations/carnitine transporter OCTN1 transports selenoneine and MeHg, regulates Se-enhanced antioxidant activity, and decreases MeHg toxicity. Thus, the dietary intake of selenoneine, by consuming fish, might decrease the formation of reactive oxygen radicals that could oxidize nucleotides in DNA, and thereby inhibit carcinogenesis, chronic diseases, and aging.

15.
Colomb. med ; 39(4): 323-327, oct.-dic. 2008. graf, tab
Artigo em Espanhol | LILACS | ID: lil-573375

RESUMO

Introducción: El transporte de carnitina dentro de la célula es mediado por el transportador mitocondrial de los ácidos grasos de cadena larga. La deficiencia primaria de carnitina se debe a una deficiencia del transportador OCTN2. Objetivos: El presente estudio tuvo como objetivo el análisis de las tasas de oxidación de sustratos tritiados por fibroblastos de pacientes que presentaban deficiencia primaria de carnitina y controles. Materiales y métodos: Fibroblastos de pacientes y controles se incubaron con [3H]-palmitato y [3H]-miristato y se determinó la oxidación de los mismos en nmol/h/mg proteína. Resultados: Encontrßndose deficiente la oxidación de sustratos tritiados en mßs de 60% por parte de los fibroblastos procedentes de los pacientes que presentaban la deficiencia de OCTN2. Conclusión: Esta técnica modificada permite el diagnóstico in vitro de la deficiencia primaria de carnitina.


Introduction: The transport of carnitine into the cell is mediated by a high-affinity sodium-dependent plasmalemmal carnitine transporter, OCTN2. Carnitine is a zwitterion essential for the mitochondrial oxidation of long-chain fatty acids. Primary carnitine deficiency is a consequence of the deficiency of OCTN2. Objective: The objective of the present study was to analyse the oxidation rate of tritiated substrates by fibroblasts from patients suffering OCTN2 deficiency and controls. Materials and methods: Fibroblasts from patients and controls were incubated with [3H]-palmitate and [3H]-miristate and the oxidation of these substrates were measured in nmol/hour/mg protein. Results: We found depressed the oxidation of tritiated substrates in fibroblasts from patients suffering the deficiency of OCTN2 in more than 60%.Conclusion: This modified technique enables us the in vitro diagnosis or primary carnitine deficiency.


Assuntos
Carnitina , Ácidos Graxos , Proteínas de Transporte da Membrana Mitocondrial
16.
Acta bioquím. clín. latinoam ; 42(2): 245-247, abr.-jun. 2008. graf, tab
Artigo em Espanhol | LILACS | ID: lil-633050

RESUMO

El transportador de carnitina (OCTN2) es fundamental para el metabolismo mitocondrial de los ácidos grasos de cadena larga. Su carencia produce la deficiencia primaria de carnitina. El presente estudio tuvo como objetivo el análisis de los ácidos grasos producidos por fibroblastos incubados en presencia de sustratos deuterados, mediante cromatografía de gases acoplada a espectrometría de masas (GC - MS) como herramienta diagnóstica de la deficiencia primaria de carnitina. Se encontró un perfil característico en esta deficiencia, lo que permite su diagnóstico in vitro.


Carnitine transporter (OCTN2) is required for the mitochondrial metabolism of long-chain fatty acids. Primary carnitine deficiency is a consequence of its deficiency. The objective of the present study was to analyse the fatty acids produced by fibroblasts incubated with deuterated substrates, using gas chromatography-mass spectrometry as a diagnostic tool for the diagnosis of VLCAD deficiency. A characteristic profile for this deficiency was found using this technique which enables its in vitro diagnosis.


Assuntos
Carnitina/deficiência , Membro 5 da Família 22 de Carreadores de Soluto/deficiência , Técnicas In Vitro , Carnitina/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...